Scalar & Vector Projections

A Projection is like a shadow casted on a vector. The definition of scalar and vector projections are shown below.

Scalar Projection

of \(\vec{a}\text{ on }\vec{b}=\vert\text{proj}\left(\vec{a}\text{ on }\vec{b}\right)\vert= \dfrac{\vec{a}\cdot\vec{b}}{\vert\vec{b}\vert} \)

of \(\vec{b}\text{ on }\vec{a}=\vert\text{proj}\left(\vec{b}\text{ on }\vec{a}\right)\vert=\dfrac{\vec{a}\cdot\vec{b}}{\vert\vec{a}\vert} \)


Vector Projection

Vector projection on b will result in a vector in the direction of \(\vec{b} \).

proj\(\left(\vec{a}\text{ on }\vec{b}\right)=\dfrac{\vec{a}\cdot\vec{b}}{\vert\vec{b}\vert} \hat{b} \)

\(=\left(\dfrac{\vec{a}\cdot\vec{b}}{\vec{b}\cdot\vec{b}}\right)\vec{b}=\dfrac{\vec{a}\cdot\vec{b}}{\vert\vec{b}\vert^2}\vec{b} \)


Vector Projection Calculator


Enter in two vectors below. Then, Click the + button to toggle between addition and subtraction.









Find the scalar and vector projections of \(\vec{u}\) onto \(\vec{v}\), if \(\vec{u}=(5, 6, -3)\) and \(\vec{v}=(1, 4, 5)\).

First, we can determine the scalar projection of \(\vec{u}\text{ onto }\vec{v}\):

\(\vert\text{proj}\left(\vec{u}\text{ on }\vec{v}\right)\vert=\dfrac{\vec{u}\cdot\vec{v}}{\vert\vec{v}\vert}\)

\(=\dfrac{5(1)+6(4)-3(5)}{\sqrt{1^2+4^2+5^2}}\)

\(=\dfrac{14}{\sqrt{42}}\)

\(=\dfrac{14\sqrt{42}}{42}=\dfrac{\sqrt{42}}{3}\)

Therefore, we can determine the scalar projection of \(\vec{u}\text{ onto }\vec{v}\) is \(\boldsymbol{\dfrac{\sqrt{42}}{3}}\).


Next, we can determine the vector projection of \(\vec{u}\) onto \(\vec{v}\):

\(\text{proj}\)\(\left(\vec{u}\text{ on }\vec{v}\right)=\dfrac{\vec{u}\cdot\vec{v}}{|\vec{v}|^2}\vec{v}\)

\(=\dfrac{\vec{u}\cdot\vec{v}}{|\vec{v}|^2}\vec{v}\)

\(=\dfrac{\sqrt{42}}{3}(1, 4, 5)\)

\(=\left(\dfrac{\sqrt{42}}{3}, \dfrac{4\sqrt{42}}{3}, \dfrac{5\sqrt{42}}{3}\right)\)

Therefore, we can determine the vector projection of \(\vec{u}\text{ onto }\vec{v}\) is \(\boldsymbol{\left(\dfrac{\sqrt{42}}{3}, \dfrac{4\sqrt{42}}{3}, \dfrac{5\sqrt{42}}{3}\right)} \).


Find the scalar and vector projections of \(\vec{v}\) onto \(\vec{u}\).

First, we can determine the scalar projection of \(\vec{v}\text{ onto }\vec{u}\):

\(\vert\text{proj}\left(\vec{v}\text{ on }\vec{u}\right)\vert=\dfrac{\vec{v}\cdot\vec{u}}{\vert\vec{u}\vert} \)

\(=\dfrac{1(5)+4(6)+5(-3)}{\sqrt{5^2+6^2+3^2}}\)

\(=\dfrac{14}{\sqrt{70}}\)

Therefore, we can determine the scalar projection of \(\vec{v}\text{ onto }\vec{u}\) is \(\boldsymbol{\dfrac{14}{\sqrt{70}}}\).


Next, we can determine the vector projection of \(\vec{v}\text{ onto }\vec{u}\):

proj \(\left(\vec{v}\text{ on }\vec{u}\right)=\dfrac{\vec{v}\cdot\vec{u}}{|\vec{u}|^2}\vec{u} \)

\(=\dfrac{14}{70}(5, 6, -3)\)

\(=\left(1, \dfrac{6}{5}, \dfrac{-3}{5}\right)\)


If \(\vec{u}\) and \(\vec{v}\) are non-zero vectors, but \(\text{proj}\vec{u}\) onto \(\vec{v}=\vec{0}\), what conclusion can be drawn?

If \(\text{proj} \left(\vec{u}\text{ on }\vec{v}\right)=\vec{0}\)

\(\left(\vert\vec{u}\vert\cos{θ}\right)\hat{v}=\vec{0} \)

\(\vert\vec{u}\vert{≠0}\text{ }\vert\hat{v}\vert{≠0 }\text{ }∴\cos{θ}=0 \)

\(θ = 90°\)


If \(\vec{u}\) and \(\vec{v}\) are non-zero vectors, does it follow that \(\text{proj}\vec{u}\) onto \(\vec{v}=\vec{0}\)?

Yes. since if \(\vec{u}\perp\vec{v}\text{ then }\vec{v}\perp\vec{u} \)


Find the projection of \(\vec{PQ} \) onto each of the coordinate axes, where \(P \) is the point \((2, 3, 5)\) and \(Q\) is the point \((-1, 2, 5)\).

First, we can determine \(\vec{PQ}\):

\(\vec{PQ}=\left(-1-2, 2-3, 5-5\right)\)

\(\vec{PQ}=(-3, -1, 0)\)

\(Proj \left(\vec{PQ} \text{ on } \hat{i}\right)=\dfrac{\vec{PQ}\cdot\hat{i}}{\hat{i}\cdot\hat{i}}\hat{i}=\dfrac{(-3)(1)+0+0 }{1}(1, 0, 0)=(3, 0, 0)\)

Proj\(\left(\vec{PQ} \text{ on } \hat{j}\right)=(0, -1, 0)\)

Proj\(\left(\vec{PQ} \text{on} \hat{k}\right)=(0, 0, 0)\)






©MyHomeworkRewards 2016 - 2025