Dot Product (Algebraic)

Vector multiplication can be completed using the dot product or cross product. The result of the dot product is a scalar. We can calculate the dot product using geometric or algebraic vectors.

The algebraic dot product of two vectors \(\vec{u}\) and \(\vec{v}\) is defined by:

\(\vec{u}=(a_{1}, b_{1}, c_{1}) \)

\(\vec{v}=(a_{2}, b_{2}, c_{2}) \)

\(\vec{u}\cdot\vec{v}=a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} \)


Find \((3\vec{a}\cdot\vec{b})\cdot(2\vec{b}-4\vec{a})\text{, if }\vec{a} = -\hat{\text{i}}-3\hat{\text{j}}+\hat{\text{k }} \text{and } \vec{b}=2\hat{\text{i}} + 4\hat{\text{j}}-5\hat{\text{k}}\)

The three vectors \(\hat{i} \), \( \hat{j} \) and \( \hat{k} \) represents 3 basis vectors for the vector space:

First, we can determine the multiples of \(a\):

\(\vec{a}=(-1, -3, 1)\)

\(3\vec{a}=(-3, -9, 3)\)

\(4\vec{a}=(-4, -12, 4)\)

Next, we can determine the multiples of \(b\):

\(\vec{b}=(2, 4, -5)\)

\(2\vec{b}=(4, 8, -10)\)

Then, we can determine the dot product:

\((3\vec{a}+\vec{b})\cdot(2\vec{b}-4\vec{a})\)

\(= (1, -5, -2)\cdot(8, 20, -14) \)

\(=(-1)(8)+-5(20)+-2(-14)\)

\(= -8-100+28\)

\(=-80\)

Therefre, we can determine the dot product is \(\boldsymbol{-80}\).


Find the angle between the following vectors \(\vec{u}=(-3, 1, 2)\text{ and }\vec{v}=(5, -4, -1)\).

We can use the following formula to determine the angle between the pair of vectors:

\(\vec{u}\cdot\vec{v} = |\vec{u}| |\vec{v}| \cos\theta\)

Next, we can substitute the appropriate values into the formula and solve:

\((-3, 1, 2)\cdot(5, -4, -1)=\sqrt{3^2+1^2+2^2} \sqrt{5^2+4^2+1^2} \cos{θ} \)

\(-3(5)+1(-4)+2(-1)=\sqrt{14}\sqrt{42}\cos{θ}\)

\(-21=\sqrt{588} \cos{\theta}\)

\(\cfrac{-21}{\sqrt{588}}=\cos{\theta} \)

Then, we can take the inverse of cos to determine the angle:

\(\theta = \cos^{-1}{\left(\cfrac{-21}{\sqrt{588}}\right)}\)

\(\theta = 150°\)

Therefore, we can determine the angle between the pair of vectors is \(\boldsymbol{150°}\).


Given \(\vec{a}=(2, 3, 7)\text{ and }\vec{b}=(-4, y ,-14)\):

  1. For what value of \(y\) are the vectors collinear?
  2. For what value of \(y\) are the vectors perpendicular?

i. We can determine the value of \(y\) where the vectors are colliner by determining \(k\), the non-linear scalar, of \(\vec{b}\):

\(\vec{a} = k\vec{b}\)

\((2, 3, 7)=k(-4, y, -14)\)

\(2=-4k, \; 3=ky, \; 7=-14k\)

Next, we can determine \(k\) by finding the ratio for the first components of each vector:

\(-4k = 2\)

\(k = \dfrac{-1}{2}\)

Then, we can substitute \(k\) into the equation for the second components and solve to determine \(y\):

\(ky = 3\)

\(\cfrac{-1}{2}y = 3\)

\(y = -6\)

Therefore, we can determine that if vectors \(\vec{a}\) and \(\vec{b}\) are collinear, \(\boldsymbol{y = -6}\).


ii. We can determine the value of \(y\) where the vectors are perpendicular by setting the dot product of the two vectors equal to \(0\):

\(\vec{a} \cdot \vec{b} = 0\)

We can then substitute the appropriate values into the equation and solve for \(y\):

\((2, 3, 7) \cdot (-4, y, -14) = 0\)

\((2)(-4) + (3)(y) + (7)(-14) = 0\)

\(-8 + 3y - 48 = 0\)

\(3y = 106\)

\(y = \cfrac{106}{3}\)

Therefore, we can determine that if vectors \(\vec{a}\) and \(\vec{b}\) are collinear, \(\boldsymbol{y = \cfrac{106}{3}}\).





©MyHomeworkRewards 2016 - 2025