Dot Product (Geometric)


Vector multiplication can be completed using the dot product or cross product. The result of the dot product is a scalar. We can calculate the dot product using geometric or algebraic vectors. The geometric dot product of two vectors \(\vec{a}\) and \(\vec{b}\) where θ is the angle between the two vectors is defined by:

\( \vec{a}\cdot\vec{b} = \vert \vec{a} \vert \vert \vec{b} \vert \cos{θ} \)

Dot Product Properties

\(\vec{u}\cdot\vec{u}=0 \) iff \(\vec{u}\perp\vec{v} \)

\(\vec{u}\cdot\vec{v}=\vec{v}\cdot\vec{u} \)

\(\vec{u}\cdot\vec{u}=\vert\vec{u}\vert^2 \)

\(\vec{u}\cdot\vec{0}=0 \)

\(\vec{u}\cdot\left(\vec{a}+\vec{b}\right)=\vec{u}\cdot\vec{a}+\vec{u}\cdot\vec{b} \)

\(k\left(\vec{u}\cdot\vec{v}\right)=\left(\vec{ku}\right)\cdot\vec{v}=\vec{u}\cdot\left(\vec{ku}\right) \)

Find the dot product for \(\vec{u}\cdot\vec{v} \) for each of the following where θ is the angle between vectors.
\(\vert\vec{u}\vert=7\), \(\vert\vec{v}\vert=12\), \(θ=60° \)
\(\vert\vec{a}\vert=20\), \(\vert\vec{b}\vert=3\), \(θ=\dfrac{5\pi}{6} \)


For the above question find \(\vec{v}\cdot\vec{u} \). What is property you can conclude from this?


Find \(\vec{a}\cdot\vec{a} \) and \(\vec{b}\cdot\vec{b} \). What can you conclude from this?


Find \(\vec{a}\cdot\vec{0} \) and \(\vec{v}\cdot\vec{0} \). What can conclude from this?


Prove that two non-zero vectors \(\vec{u} \) and \(\vec{v} \) are perpendicular, if and only if \(\vec{u}\cdot\vec{v}=0 \).

Proof 1:

Proof 2:


Explain why \(\left(\vec{a}\cdot\vec{b}\right)\cdot\vec{c}\neq\vec{a}\cdot\left(\vec{c}\cdot\vec{b}\right) \)



©MyHomeworkRewards 2016 - 2024