Dot Product (Geometric)

Vector multiplication can be completed using the Dot Product or cross product. The result of the dot product is a scalar. We can calculate the dot product using geometric or algebraic vectors. The geometric dot product of two vectors \ (\vec{a}\) and \(\vec{b}\) where \(\theta\) is the angle between the two vectors is defined by:

\(\vec{a}\cdot\vec{b} = \vert \vec{a} \vert \vert \vec{b} \vert \cos{θ}\)

Dot Product Properties

\(\vec{u}\cdot\vec{u}=0 \) if \(\vec{u}\perp\vec{v} \)

\(\vec{u}\cdot\vec{v}=\vec{v}\cdot\vec{u} \)

\(\vec{u}\cdot\vec{u}=\vert\vec{u}\vert^2 \)

\(\vec{u}\cdot\vec{0}=0 \)

\(\vec{u}\cdot\left(\vec{a}+\vec{b}\right)=\vec{u}\cdot\vec{a}+\vec{u}\cdot\vec{b} \)

\(k\left(\vec{u}\cdot\vec{v}\right)=\left(\vec{ku}\right)\cdot\vec{v}=\vec{u}\cdot\left(\vec{ku}\right) \)


Find the dot product for each of the following vector pairs where \(\theta\) is the angle between vectors

\(\vert\vec{u}\vert=7\), \(\vert\vec{v}\vert=12\), \(θ=60°\)

We can determine the dot product of this vector pair as such:

\(\vec{u}\cdot\vec{v} = \vert \vec{u} \vert \vert \vec{v} \vert \cos{θ}\)

\(\vec{u}\cdot\vec{v}=(7)(12)\cos{(60°)}\)

\(\vec{u}\cdot\vec{v} = 42\)

Therefore, we can determine the dot product is \(\boldsymbol{42}\).


\(\vert\vec{a}\vert=20\), \(\vert\vec{b}\vert=3\), \(θ=\dfrac{5\pi}{6}\)

We can determine the dot product of this vector pair as such:

\(\vec{a}\cdot\vec{b} = \vert \vec{a} \vert \vert \vec{b} \vert \cos{θ}\)

\(\vec{a}\cdot\vec{b}=(20)(3)\cos{\left(\dfrac{5\pi}{6}\right)}\)

\(\vec{a}\cdot\vec{b} = 60\times\left(-\dfrac{\sqrt{3}}{2}\right)\)

\(\vec{a}\cdot\vec{b} = -30\sqrt{3}\)

Therefore, we can determine the dot product is \(\boldsymbol{-30\sqrt{3}}\).


For the above question find \(\vec{v}\cdot\vec{u}\). What is property you can conclude from this?

\(\vec{v}\cdot\vec{u}=(12)(7)\cos{(60°)} = 42\)

\(\vec{u}\cdot\vec{v}=\vec{v}\cdot\vec{u}\)

Therefore, we can conclude that dot product is commutative.


Find \(\vec{a}\cdot\vec{a} \) and \(\vec{b}\cdot\vec{b} \). What can you conclude from this?

Since the angle between \(\vec{a}\) and itself is \(0°\):

\(\vec{a}\cdot\vec{a}= \vert \vec{a} \vert \vert \vec{a} \vert \cos{(0°)}={\vert \vec{a} \vert}^2\)

\(\vec{b}\cdot\vec{b}=\vert \vec{b} \vert \vert \vec{b} \vert \cos{(0°)} = {\vert \vec{b} \vert}^2 = 3^2 = 9\)

Therefore, we can conclude that \(\boldsymbol{\vec{a}\cdot\vec{a}=\vert\vec{a}\vert^2 }\).


Find \(\vec{u}\cdot\vec{0}\) and \(\vec{v}\cdot\vec{0}\). What can conclude from this?

We can assess these dot products as such:

\(\vec{a}\cdot\vec{0}=(7)(0)\cos{\theta} = 0\)

\(\vec{v}\cdot\vec{0}=(12)(0)\cos{\theta} = 0\)

Therefore, we can determine that the dot product of zero vector and any vector is \(\boldsymbol{0}\).


Prove that two non-zero vectors \(\vec{u} \) and \(\vec{v} \) are perpendicular, if and only if \(\vec{u}\cdot\vec{v} = 0\).

Proof 1:

Assume \(\vec{u}\perp\vec{v} \; \text{then} \; \theta = 90°\)

Then \(\vec{u}\cdot\vec{v} = \vert\vec{u}\vert\vert\vec{v}\vert\cos{90°}\)

\(\vert\vec{u}\vert\vert\vec{v}\vert(0) = 0\)


Proof 2:

Assume \(\vec{u}\cdot\vec{v} = 0 \)

Then \(\vert\vec{u}\vert\vert\vec{v}\vert\cos{θ} = 0\)

Since the vectors are non-zero:

\(\cos{\theta} = 0\)

\(\theta = 90°\)

Therefore, we can determine \(\vec{u} \) and \(\vec{v} \) have an angle of \(90°\) between them.


Explain why \(\left(\vec{a}\cdot\vec{b}\right)\cdot\vec{c}\neq\vec{a}\cdot\left(\vec{c}\cdot\vec{b}\right)\)

\(\left(\vec{a}\cdot\vec{b}\right)\cdot\vec{c}\neq\vec{a}\cdot\left(\vec{c}\cdot\vec{b}\right)\)

\(\left(\vec{a}\cdot\vec{b}\right)\) is a scalar. Dot product requires two vectors not a vector and a scalar as shown above.






©MyHomeworkRewards 2016 - 2025