Variation of Parameters

For higher-order non-homogeneous differential equations, we can use the Variation of Parameters method which invovles solving the complementary solution \((y_c)\) for the homogeneous equation and then the particular solution \((y_p)\). The general solution is:

\( y = y_c + y_p \)

To find the particular solution, we consider a solution \(y_p = u_1 y_1 + u_2 y_2\). Where \(y_1, y_2\) are solutions of the complementary solution and \(u_1, u_2\) are non-constant coefficients.

Plugging this into the standard form second-order DE gives the restrictions:

\(u_1^{'} y_1 + u_2^{'} y_2 = 0\)

\(u_1^{'} y_1^{'} + u_2^{'} y_2^{'} = g(x)\)

We will use these restrictions to solve for the functions \(u_1, u_2\). The steps to use the variation of parameter method are:

  1. Solve the general complementary solution for the homogeneous DE.
  2. Solve the system of equations to solve for \( u_1^{'}, u_2^{'}\).
  3. Integrate to solve for \(u_1, u_2\).
  4. Obtain the general particular solution \(y_p = u_1 y_1 + u_2 y_2\).
  5. Obtain the general solution combinding the complementary and particular soltuions \( y = y_c + y_p \).

Solve the general solution to \(y^{''} - 5y^{'} + 6y = 2e^t\).

First, solve for the complementary solution for the homogeneous DE:

\(y^{''} - 5y^{'} + 6y = 0\)

We will try a solution \(y=e^{kt}\) with auxilliary equation \( k^2 -5 k + 6 = 0 \). The determinant is:

\(b^2 - 4ac = (-5)^2 - 4(1)(6) = 25 - 24 = 1 > 0\)

The solution has two real roots. Factoring the auxilliary equation yields:

\((k-3)(k-2) = 0\)

The solutions are \(k=3,2\) so the general solution is:

\(y_c = c_1e^{3t} +c_2e^{2t}\)

Next we will solve the set of equations:

\( u_1^{'} y_1 + u_2^{'} y_2 = 0 \)

\( u_1^{'} y_1^{'} + u_2^{'} y_2^{'} = g(x) \)

In matrix form this is:

\( \left [ \begin{matrix} e^{3t} & e^{2t} \\ 3e^{3t} & 2e^{2t} \end{matrix} \right ] \left [ \begin{matrix} u_1^{'} \\ u_2^{'} \end{matrix} \right ] = \left [ \begin{matrix} 0 \\ 2e^{t} \end{matrix} \right ] \)

Use Cramer's Rule to solve the system of equations:

\( u_1^{'} = \cfrac{\begin{vmatrix} 0 & e^{2t} \\ 2e^{t} & 2e^{2t} \end{vmatrix}} {\begin{vmatrix} e^{3t} & e^{2t} \\ 3e^{3t} & 2e^{2t} \end{vmatrix}} = \cfrac{-2e^{3t}}{-e^{5t}} = 2e^{-2t}\)

\( u_2^{'} = \cfrac{\begin{vmatrix} e^{3t} & 0 \\ 3e^{3t} & 2e^{t} \end{vmatrix}} {\begin{vmatrix} e^{3t} & e^{2t} \\ 3e^{3t} & 2e^{2t} \end{vmatrix}} = \cfrac{2e^{4t}}{-e^{5t}} = -2e^{-t}\)

Now take the integral to solve for \(u_1, u_2\):

\(u_1 = \int{u_1^{'} dt} = \int{2e^{-2t} dt} = -e^{-2t}\)

\(u_2 = \int{u_2^{'} dt} = \int{-2e^{-t} dt} = 2e^{-t}\)

The general particular solution is :

\(y_p = u_1 y_1 + u_2 y_2\)

\(y_p = -e^{-2t}e^{3t} + 2e^{-t} e^{2t} = e^{t}\)

The general solution is:

\(y = y_c + y_p = c_1e^{3t} +c_2e^{2t} + e^{t}\)


Try these questions:
Take the Quiz: