Laplace Transformations Translation Theorems Part 2

We will now cover some more complicated Laplace Transformations.

Convolution Theorem

The Convolution Theorem states:

\( \mathcal {L} \{ f \ast g \} = F(s) G(s) \)

Where \(f \ast g\) is the convolution operator:

\( f \ast g = \displaystyle \int_0^t f(\tau) g(t-\tau) d\tau\)

The inverse of the theorem is simply:

\( \mathcal {L}^{-1} \{ F(s) G(s) \} = f \ast g \)

Evaluate \(\mathcal {L} \{ e^{-2t} \ast t^4 \}\).

Since there is a convolution operation, we can use the Convolution Theorem:

\( \mathcal {L} \{e^{-2t} \ast t^4 \} = \mathcal {L} \{e^{-2t} \} \mathcal {L} \{ t^4 \} = \cfrac{1}{s+2} \cfrac{5!}{s^5} \)


Evaluate \(\mathcal {L}^{-1} \left\{ \cfrac{s}{s^4-9} \right\} \).

With a bit of algebra we can rewrite as:

\(\mathcal {L}^{-1} \left \{\cfrac{s}{(s^2-3)(s^2+3)} \right \} =\mathcal {L}^{-1} \left \{ \cfrac{s}{s^2-3} \cfrac{1}{s^2+3} \right\}\)

Since this expression is the product of two terms, we can use the Convolution Theorem:

\(\mathcal {L}^{-1} \left\{ \cfrac{s}{s^4-9} \right\} = \mathcal {L}^{-1} \left\{ \cfrac{s}{s^2-3} \right\} \times \mathcal {L}^{-1} \left\{ \cfrac{1}{s^2+3} \right\}\)

\(\mathcal {L}^{-1} \left\{ \cfrac{s}{s^2-3} \right\} = \cosh {\sqrt{3}t} \)

\(\mathcal {L}^{-1} \left\{ \cfrac{1}{s^2+3} \right\} =\cfrac{1}{\sqrt{3}} \sin {\sqrt{3}t}\)

Putting it all together gives:

\(\mathcal {L}^{-1} \{ \cfrac{s}{s^4-9} \} = \cosh {\sqrt{3}t} \times \sin {\sqrt{3}t} \)


Integro-Differential Equations

A special case is when \(g(t) = 0\) which gives:

\( f \ast 1 = \int_0^t {f(\tau) d\tau}\)

The Laplace Transformation is:

\( \mathcal{L} \{ \int_0^t {f(\tau) d\tau}\} = \cfrac{F(s)}{s} \)

The inverse Laplace Transformation is:

\( \mathcal {L}^{-1} \{ \cfrac{F(s)}{s} \} = \int_0^t {f(\tau) d\tau} \)

This allows us to solve integro-differential equations.


Solve \( f(t) = 2t -4 \int_0^t \sin (\tau) f(t-\tau) d\tau \).

First, let's rewrite the integral portion as a convolution:

\( f(t) = 2t -4 \sin (\tau) \ast f(t-\tau)\)

Next, we can take the Laplace on each side and use the convolution rule:

\( \mathcal{L} \{ f(t) \} = \mathcal{L} \{ 2t -4 \sin (\tau) \ast f(t-\tau) \} \)

\( F = \cfrac{2}{s^2} -4\cfrac{F}{s^2+1} \)

Then, we can isolate for \(F\):

\(F + 4\cfrac{F}{s^2+1} = \cfrac{2}{s^2} \)

\(F \left(1+ 4\cfrac{1}{s^2+1}\right) = \cfrac{2}{s^2} \)

\(F \left(\cfrac{s^2+5}{s^2+1}\right) = \cfrac{2}{s^2} \)

\(F = \cfrac{2(s^2+1)}{s^2(s^2+5)} \)

After, we can rewrite the right hand side using partial fractions:

\(F = \cfrac{As+B}{s^2} + \cfrac{Cs+D}{s^2+5} \)

\(F = \cfrac{(As+B)(s^2+5) + (Cs+D)(s^2)}{s^2(s^2+5)} \)

\(2s^2 + 2 = (As+B)(s^2+5) + (Cs+D)(s^2) \)

\(2s^2 + 2 = As^3 + 5As + Bs^2 + 5B + Cs^3 + Ds^2 \)

Since there is no \(s^3\) on the left hand side, \(A=0, C=0\). We are left with two equations and two unknowns:

\( 2s^2 + 2 = (B+D)s^2 + 5B \)

\( 2 = B+D \)

\( 2 = 5B \)

Solving yields \(B = \cfrac{2}{5} , D = \cfrac{8}{5}\). We can rewrite as:

\(F = \cfrac{2}{5}\cfrac{1}{s^2} + \cfrac{8}{5}\cfrac{1}{s^2+5} \)

Now take Laplace inverse on both sides:

\(\mathcal {L}^{-1} \{F\} = \mathcal {L}^{-1} \left\{\cfrac{2}{5}\cfrac{1}{s^2} + \cfrac{8}{5}\cfrac{1}{s^2+5} \right\} \)

\( f(t) = \cfrac{2}{5}t + \cfrac{8}{5 \sqrt{5}} \sin {\sqrt{5} t }\)


Review these lessons:
Try these questions:

Periodic Functions

Consider a piecewise continuous functions with period \(T\) such as:

\(f(t) = \begin{cases} 0, & 0 \le t \lt \frac{T}{2} \\ 1, & \frac{T}{2} \lt t \le T \end{cases} \)

The Laplace Transformation is:

\( \mathcal{L} \{f\} = \cfrac{1}{1-e^{-sT}} \displaystyle \int_0^T {e^{-st} f(t)} dt\)

Evaluate \(\mathcal{L} \{f\} \) for the function above for a period of \(4\).

\( \mathcal{L} \{f\} = \cfrac{1}{1-e^{-sT}} \displaystyle \int_0^T {e^{-st} f(t)} dt\)

\( \mathcal{L} \{f\} = \cfrac{1}{1-e^{-4s}} \displaystyle \int_0^4 {e^{-st} f(t)} dt\)

Since the function is piecewise we split up the integral:

\( \mathcal{L} \{f\} = \cfrac{1}{1-e^{-4s}} \left ( \displaystyle \int_0^2 {e^{-st} f(t)} dt + \displaystyle \int_2^4 {e^{-st} f(t)} dt \right ) \)

\( \mathcal{L} \{f\} = \cfrac{1}{1-e^{-4s}} \displaystyle \int_2^4 {e^{-st}} dt \)

\( \mathcal{L} \{f\} = \cfrac{1}{1-e^{-4s}} \cfrac{-1}{s} (e^{-4s} - e^{-2s} ) \)

\( \mathcal{L} \{f\} = \cfrac{e^{-2s} - e^{-4s}}{s(1-e^{-4s})} \)


Dirac Function

The Dirac function is a special unit impluse where the "on" time is squeezed to only a moment in time:

\(\delta (t-t_0) = \lim\limits_{a \to \infty} \delta_a (t-t_0) \)

Where the unit impluse is defined as:

\(\delta_a (t-t_0) = \begin{cases} 0, & 0 \le t \lt t_0 - a \\ \frac{1}{2a}, & t_0 - a \le t \lt t_0 + a \\ 0, & t_0 + a \ge t \end{cases} \)

That means the Dirac Function is infinitiy when \(t = t_0\). It is found in applications with temporary external forces or voltage, for example.

The Laplace Transformation is:

\( \mathcal{L} \{\delta (t-t_0) \} = e^{-st_0}\)

Solve \(y'' + 2y' +2y = \delta(t-\pi)\) subject to \(y(0) = 1, y'(0) = 0\).

First, we can take the Laplace on both sides:

\( \mathcal{L} \{ y'' + 2y' +2y \} = \mathcal{L} \{ \delta(t-\pi) \}\)

\( (s^2Y - sy(0) - y'(0)) + 2(sY - y(0)) + 2Y = e^{-\pi s } \)

\( s^2Y - s + 2sY - 2 + 2Y = e^{-\pi s } \)

\( Y(s^2 + 2s + 2) = e^{-\pi s } + s + 2 \)

\( Y = \cfrac{ e^{-\pi s } + s + 2} {s^2 + 2s + 2} \)

Next, we can complete the square in the denominator and split up the terms in the numerator:

\(Y = \cfrac{ e^{-\pi s } + s + 2} {(s+1)^2 + 1 } \)

\(Y = \cfrac{ e^{-\pi s }} {(s+1)^2 + 1 } + \cfrac{ s+1 } {(s+1)^2 + 1 } + \cfrac{ 1} {(s+1)^2 + 1 }\)

We split up the \(s+2\) to \(s+1\) and \(1\) since the denominator has a translation factor \((s+1)^2\).

Then, we can take the Laplace inverse of each term. The first term uses both the First and Second Translation Theorems:

\( \mathcal{L}^{-1} \{ \cfrac{ 1} {(s +1)^2 + 1 } \}= e^{-t} \sin(t) \)

\( \mathcal{L}^{-1} \{ \cfrac{ e^{-\pi s }} {(s+1)^2 + 1 } \}= \mathcal{U} (t-\pi) e^{-(t-\pi)} \sin(t - \pi) \)

The second and third terms use the First Translation Theorem:

\( \mathcal{L}^{-1} \{ \cfrac{ s+1} {(s +1)^2 + 1 } \}= e^{-t} \cos(t) \)

\( \mathcal{L}^{-1} \{ \cfrac{ 1} {(s +1)^2 + 1 } \}= e^{-t} \sin(t) \)

Putting it all together yields:

\( y = \mathcal{U} (t-\pi) e^{-(t-\pi)} \sin(t - \pi) + e^{-t} \cos(t) + e^{-t} \sin(t)\)


Try these questions: