Laplace Transformations Translation Theorems Part 2

We will now cover some more complicated Lapalce Transformations:

Convolution Theorem

The Convolution Theorem states:

\( \mathcal {L} \{ f \ast g \} = F(s) G(s) \)

Where \(f \ast g\) is the convolution operator:

\( f \ast g = \displaystyle \int_0^t f(\tau) g(t-\tau) d\tau\)

The inverse of the theorem is simply:

\( \mathcal {L}^{-1} \{ F(s) G(s) \} = f \ast g \)

Evaluate \( \mathcal {L} \{ e^{-2t} \ast t^4 \} \).


Evaluate \( \mathcal {L}^{-1} \{ \frac{s}{s^4-9} \} \).


Integro-Differential Equations

A special case is when \(g(t) = 0\) which gives:

\( f \ast 1 = \int_0^t {f(\tau) d\tau}\)

The Lapalce Transformation is:

\( \mathcal{L} \{ \int_0^t {f(\tau) d\tau}\} = \cfrac{F(s)}{s} \)

The inverse Laplace is:

\( \mathcal {L}^{-1} \{ \cfrac{F(s)}{s} \} = \int_0^t {f(\tau) d\tau} \)

This allows us to solve integro-differential equations.

Solve \( f(t) = 2t -4 \int_0^t \sin (\tau) f(t-\tau) d\tau \).


Review these lessons:
Try these questions:

Periodic Functions

Consider a piecewise continuous functions with period \(T\) such as:

\( f(t) = \begin{cases} 0, & 0 \le t \lt \frac{T}{2} \\ 1, & \frac{T}{2} \lt t \le T \end{cases} \)

The Lapalce Transformation is:

\( \mathcal{L} \{f\} = \cfrac{1}{1-e^{-sT}} \displaystyle \int_0^T {e^{-st} f(t)} dt\)

Evaluate \( \mathcal{L} \{f\} \) for the function above for a period of 4.


Dirac Function

The Dirac function is a special unit impluse where the "on" time is squeezed to only a moment in time:

\( \delta (t-t_0) = \lim\limits_{a \to \infty} \delta_a (t-t_0) \)

Where the unit impluse is defined as:

\( \delta_a (t-t_0) = \begin{cases} 0, & 0 \le t \lt t_0 - a \\ \frac{1}{2a}, & t_0 - a \le t \lt t_0 + a \\ 0, & t_0 + a \ge t \end{cases} \)

That means the Dirac Function is infinitiy when \(t = t_0\). It is found in applications with temporary external forces or voltage, for example. The Lapalce Transformation is:

\( \mathcal{L} \{\delta (t-t_0) \} = e^{-st_0}\)

Solve \(y'' + 2y' +2y = \delta(t-\pi)\) subject to \( y(0) = 1, y'(0)=0 \).


Try these questions: