Synthetic Division is used when dividing polynomials by linear factors.
Divide the polynomial \( 2x^3 - 5x^2 + 3x + 1 \) by \( x-2 \) using synthetic division.
First, we can rewrite this expression in the synthetic division format. We can identify the dividend is \( 2x^3 - 5x^2 + 3x + 1 \). We can also identify the divisor is \( x-2 \), thereby making \(c = 2\):
\begin{array}{c|rrrr}& x^3 & x^2 & x^1 & x^0\\ & 2 & -5 & 3 & 1\\ {\color{red}2} & & & & \\ \hline & & & & |\phantom{-} { } \end{array}Next, we can divide the polynomial using synthetic division:
\begin{array}{c|rrrr}& x^3 & x^2 & x^1 & x^0\\ & 2 & -5 & 3 & 1\\ {\color{red}2} & \downarrow & 4 & -2 & 2\\ \hline & 2 & -1 & 1 & |\phantom{-} {\color{blue}3} \end{array}Therefore, we can determine that dividing the polynomial \(2x^3 - 5x^2 + 3x + 1\) by \(x-2\) gives us a remainder of \(\boldsymbol{3}\).
\(3x^4 -2x^3 + 0x^2 + 5x - 6\) by \(x + 1\)
First, we can rewrite this expression in the synthetic division format. We can identify the dividend is \( 3x^4 -2x^3 + 0x^2 + 5x - 6 \). We can also identify the divisor is \( x + 1 \), thereby making \(c = -1\):
\begin{array}{c|rrrr}& x^4 & x^3 & x^2 & x^1 & x^0\\ & 3 & -2 & 0 & 5 & -6\\ {\color{red}{-1}} & & & & & \\ \hline & & & & &|\phantom{-} { } \end{array}Next, we can divide the polynomial using synthetic division:
\begin{array}{c|rrrr}& x^4 & x^3 & x^2 & x^1 & x^0\\ & 3 & -2 & 0 & 5 & -6\\ {\color{red}{-1}} & \downarrow & -3 & 5 & -5 & 0\\ \hline & 3 & -5 & 5 & 0 &|\phantom{-} {\color{blue}-6} \end{array}Therefore, we can determine that dividing the polynomial \( 3x^4 -2x^3 + 0x^2 + 5x - 6 \) by \( x + 1 \) gives us a remainder of \(\boldsymbol{-6}\).
\(2x^3 + 7x^2 - 6\) by \(x - 4\)
First, we can rewrite this expression in the synthetic division format. We can identify the dividend is \(2x^3 + 7x^2 - 6\) . We can also identify the divisor is \(x - 4\), thereby making \(c = 4\):
\begin{array}{c|rrrr}& x^3 & x^2 & x^1 & x^0\\ & 2 & 7 & 0 & -6\\ {\color{red}{4}} & & & & \\ \hline & & & & |\phantom{-} { } \end{array}Next, we can divide the polynomial using synthetic division:
\begin{array}{c|rrrr}& x^3 & x^2 & x^1 & x^0\\ & 2 & 7 & 0 & -6\\ {\color{red}{4}} & \downarrow & 8 & 60 & 60\\ \hline & 2 & 15 & 240 & |\phantom{-} {\color{blue}234} \end{array}Therefore, we can determine that dividing the polynomial \(2x^3 + 7x^2 - 6\) by \(x - 4\) gives us a remainder of \(\boldsymbol{234}\).