Long Division is used when dividing polynomials by linear factors. Unlike synthetic division, long division is more versatile as a ploynomial can be divided by another polynomial not just linear expressions.
Divide the polynomial \(2x^3 - 5x^2 + 3x + 1\) by \(x-2\) using long division.
First, we can rewrite this expression in the long division format. We can identify the dividend is \(2x^3 - 5x^2 + 3x + 1\) and the divisor is \(x-2\):
$$ \require{enclose} \begin{array}{r} \\[-3pt] x-2 \enclose{longdiv}{2x^3 - 5x^2 + 3x + 1} \\[-3pt] \end{array} $$Next, we can divide the polynomial using long division:
$$ \require{enclose} \begin{array}{r} 2x^2 - x + 1 \\[-3pt] x - 2 \enclose{longdiv}{2x^3 - 5x^2 + 3x + 1} \\[-3pt] \underline{-2x^3 + 4x^2}\phantom{2} \\[-3pt] -x^2 + 3x + 1 \\[-3pt] \underline{x^2 - 2x}\phantom{2} \\[-3pt] x+ 1 \\[-3pt] \underline{-x + 2}\phantom{2} \\[-3pt] \color{blue}3 \\[-3pt] \end{array} $$Therefore, we can determine that dividing the polynomial \(2x^3 - 5x^2 + 3x + 1\) by \(x-2\) using long division gives us a remainder of \(\boldsymbol{3}\).
\(6x^2 - 5x + 6\) by \(2x + 1\)
First, we can rewrite this expression in the long division format. We can identify the dividend is \( 6x^2 - 5x + 6 \) and the divisor is \(2x + 1 \):
$$ \require{enclose} \begin{array}{r} \\[-3pt] 2x+1 \enclose{longdiv}{6x^2 - 5x + 6 } \\[-3pt] \end{array} $$Next, we can divide the polynomial using long division:
$$ \require{enclose} \begin{array}{r} 3x-4 \\[-3pt] 2x+1 \enclose{longdiv}{6x^2 - 5x + 6} \\[-3pt] \underline{-6x^2 - 3x}\phantom{2} \\[-3pt] -8x + 6 \\[-3pt] \underline{8x + 4}\phantom{2} \\[-3pt] \color{blue}10 \\[-3pt] \end{array} $$Therefore, we can determine that dividing the polynomial \(6x^2 - 5x + 6\) by \(2x + 1\) using long division gives us a remainder of \(\boldsymbol{10}\).
\(x^3 + 3x^2 - 8x - 4\) by \(x - 3\)
First, we can rewrite this expression in the long division format. We can identify the dividend is \(x^3 + 3x^2 - 8x - 4\) and the divisor is \(x - 3\):
$$ \require{enclose} \begin{array}{r} \\[-3pt] x-3 \enclose{longdiv}{x^3 + 3x^2 - 8x - 4} \\[-3pt] \end{array} $$Next, we can divide the polynomial using long division:
$$ \require{enclose} \begin{array}{r} x^2 + 6x + 10 \\[-3pt] x-3 \enclose{longdiv}{x^3 + 3x^2 - 8x - 4} \\[-3pt] \underline{-x^3 + 3x^2}\phantom{2} \\[-3pt] 6x^2 - 8x - 4 \\[-3pt] \underline{-6x^2+18x}\phantom{2} \\[-3pt] 10x-4 \\[-3pt] \underline{-10x + 30}\phantom{2} \\[-3pt] \color{blue}26 \\[-3pt] \end{array} $$Therefore, we can determine that dividing the polynomial \(x^3 + 3x^2 - 8x - 4\) by \(x - 3\) using long division gives us a remainder of \(\boldsymbol{26}\).