Modelling With Matrices
A matrix is a rectangular array of numbers arranged in rows and columns. Each number inside the matrix is called an entry. Matrices are often enclosed in square brackets.
The dimension of a matrix is given by multiplying the number of rows by the number of columns. This can be expressed algebraically as (\(m × n\)).
Categorizing Matrices
Row Matrix: A matrix with only one row
Example: \(\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}\)
Column Matrix: A matrix with only one column
Example: \(\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \)
Square Matrix: A matrix with the same number of rows and columns (\(n × n\))
Example: \( \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \)
Identity Matrix: A square matrix with \(1\)s on the diagonal and \(0\)s elsewhere
Example: \( \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \)
Zero Matrix: A matrix where all entries are \(0\)
Example: \( \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \)
Transpose of a Matrix
- The transpose of a matrix is obtained by swapping its rows and columns.
- It is denoted as AT.
- Steps to find the transpose:
- Take the first row and make it the first column
- Take the second row and make it the second column
- Repeat this for all rows
Matrix Addition and Subtraction
- Two matrices can be added or subtracted only if they have the same dimensions
- Addition and subtraction are done element-wise
Steps for Matrix Addition
- Ensure both matrices have the same dimensions
- Add corresponding elements
- Write the result as a new matrix
Steps for Matrix Subtraction
- Ensure both matrices have the same dimensions
- Subtract corresponding elements
- Write the result as a new matrix
\(A = \begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix}, \quad B = \begin{bmatrix} 5 & 6 \\ 7 & 8\end{bmatrix} \)
We can confirm these matrices can be added since they both have dimensions of \(2\times2\).
Next, we can add these matrices by adding the corresponding elements of each matrix:
\(A + B = \begin{bmatrix}a_{11} & a_{12} \\ a_{21} & a_{22}\end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22}\end{bmatrix}\)
\(A + B = \begin{bmatrix} 1 + 5 & 2 + 6 \\ 3 + 7 & 4 + 8 \end{bmatrix}\)
\(A + B = \begin{bmatrix}6 & 8 \\ 10 & 12 \end{bmatrix}\)
Therefore, we can determine the sum of matrices \(A\) and \(B\) is \(\begin{bmatrix}6 & 8 \\ 10 & 12 \end{bmatrix}\).
\(C = \begin{bmatrix} -3 & 7 \\ 2 & -5\end{bmatrix}, \quad D = \begin{bmatrix} 4 & -2 \\ -1 & 3 \end{bmatrix} \)
We can confirm these matrices can be added since they both have dimensions of \(2 \times 2\).
Next, we can add these matrices by adding the corresponding elements of each matrix:
\(C + D = \begin{bmatrix}c_{11} & c_{12} \\ c_{21} & c_{22}\end{bmatrix} + \begin{bmatrix} d_{11} & d_{12} \\ d_{21} & d_{22} \end{bmatrix} = \begin{bmatrix} c_{11} + d_{11} & c_{12} + d_{12} \\ c_{21} + d_{21} & c_{22} + d_{22}\end{bmatrix}\)
\(C + D = \begin{bmatrix} -3 + 4 & 7 + (-2) \\ 2 + (-1) & -5 + 3\end{bmatrix}\)
\(C + D = \begin{bmatrix} 1 & 5 \\ 1 & -2 \end{bmatrix}\)
Therefore, we can determine the sum of matrices \(C\) and \(C\) is \(\begin{bmatrix} 1 & 5 \\ 1 & -2 \end{bmatrix}\).
\(M = \begin{bmatrix} 10 & -15 \\ 6 & 9\end{bmatrix}, \quad N = \begin{bmatrix}-8 & 20 \\ -3 & -7\end{bmatrix} \)
We can confirm these matrices can be added since they both have dimensions of \(2 \times 2\).
Next, we can add these matrices by adding the corresponding elements of each matrix:
\(M + N = \begin{bmatrix}m_{11} & m_{12} \\ m_{21} & m_{22}\end{bmatrix} + \begin{bmatrix} n_{11} & n_{12} \\ n_{21} & n_{22} \end{bmatrix} = \begin{bmatrix} m_{11} + n_{11} & m_{12} + n_{12} \\ m_{21} + n_{21} & m_{22} + n_{22}\end{bmatrix}\)
\(M + N = \begin{bmatrix} 10 + (-8) & -15 + 20 \\ 6 + (-3) & 9 + (-7)\end{bmatrix}\)
\(M + N = \begin{bmatrix} 2 & 5 \\ 3 & 2 \end{bmatrix}\)
Therefore, we can determine the sum of matrices \(M\) and \(N\) is \(\begin{bmatrix} 2 & 5 \\ 3 & 2 \end{bmatrix}\).
\(E = \begin{bmatrix} 8 & 6 \\ 4 & 2\end{bmatrix}, \quad F = \begin{bmatrix}3 & 2 \\ 1 & 1\end{bmatrix}, \quad E - F\)
We can confirm these matrices can be added since they both have dimensions of \(2 \times 2\).
Next, we can subtract these matrices by subtracting the corresponding elements of each matrix:
\(E - F = \begin{bmatrix} e_{11} & e_{12} \\ e_{21} & e_{22} \end{bmatrix} - \begin{bmatrix} f_{11} & f_{12} \\ f_{21} & f_{22} \end{bmatrix} = \begin{bmatrix} e_{11} - f_{11} & e_{12} - f_{12} \\ e_{21} - f_{21} & e_{22} - f_{22} \end{bmatrix}\)
\(E - F = \begin{bmatrix} 8 - 3 & 6 - 2 \\ 4 - 1 & 2 - 1 \end{bmatrix}\)
\(E - F = \begin{bmatrix} 5 & 4 \\ 3 & 1\end{bmatrix}\)
Therefore, we can determine the difference between matrices \(E\) and \(F\) is \(\begin{bmatrix} 5 & 4 \\ 3 & 1\end{bmatrix}\).
\(X = \begin{bmatrix}-2 & 7 \\ 5 & -3 \end{bmatrix}, \quad Y = \begin{bmatrix}4 & -6 \\ -2 & 8 \end{bmatrix}, \quad X - Y\)
We can confirm these matrices can be added since they both have dimensions of \(2 \times 2\).
Next, we can subtract these matrices by subtracting the corresponding elements of each matrix:
\(X - Y = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} - \begin{bmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{bmatrix} = \begin{bmatrix} x_{11} - y_{11} & x_{12} - y_{12} \\ x_{21} - y_{21} & x_{22} - y_{22} \end{bmatrix}\)
\(X - Y = \begin{bmatrix} -2 - 4 & 7 - (-6) \\ 5 - (-2) & -3 - 8 \end{bmatrix}\)
\(X - Y = \begin{bmatrix} -6 & 13 \\ 7 & -11 \end{bmatrix}\)
Therefore, we can determine the difference between matrices \(X\) and \(Y\) is \(\begin{bmatrix} -6 & 13 \\ 7 & -11 \end{bmatrix}\).
\(S = \begin{bmatrix}12 & -5 \\ 9 & 14\end{bmatrix}, \quad T = \begin{bmatrix}7 & 3 \\ -6 & 10 \end{bmatrix}, \quad S - T\)
We can confirm these matrices can be added since they both have dimensions of \(2 \times 2\).
Next, we can subtract these matrices by subtracting the corresponding elements of each matrix:
\(S - T = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} - \begin{bmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{bmatrix} = \begin{bmatrix} s_{11} - t_{11} & s_{12} - t_{12} \\ s_{21} - t_{21} & s_{22} - t_{22} \end{bmatrix}\)
\(S - T = \begin{bmatrix} 12 - 7 & -5 - 3 \\ 9 - (-6) & 14 - 10 \end{bmatrix}\)
\(S - T = \begin{bmatrix}5 & -8 \\ 15 & 4\end{bmatrix}\)
Therefore, we can determine the difference between matrices \(S\) and \(T\) is \(\begin{bmatrix}5 & -8 \\15 & 4\end{bmatrix}\).