Unit Vector Parallel to Tangent Line

41. Find the unit vectors that are parallel to the tangent line to the parabola $y=x^{2}$ at the point $(2,4)$.
(1) Solve for the slope of the tangent
$\frac{d y}{d x}=2 x$
The slope at the point $(2,4)$ is:
$m=\frac{d y}{d x}=2 x=2(2)=4$

Extra
The equation of the line with a slope of 4 Passing through $(2,4)$ is:
$y=m x+b$
$y=4 x+b$
$4=4(2)+b$
$4=8+b$
$b=-4$
$y=4 x-4$
(2) The vector must be parallel to the tangent line.
$\vec{v}= \pm<1,4>$

The unit vector is:
$\hat{v}=\frac{\vec{v}}{|\vec{v}|}=\frac{ \pm<1,4>}{\sqrt{1^{2}+4^{2}}}= \pm \frac{<1,4>}{\sqrt{17}}$
$\hat{v}= \pm \frac{<1,4\rangle}{\sqrt{17}}$
Q12.2-41 from Calculus: Early Transcendentals 7e by Stewart
Why: Need a vector in the same direction but a different length. Steps:

1. Find the slope of the tangent.
2. Find the unit vectors parallel to the tangent.

$$
y-1
$$

