Adding and Subtracting Algebraic Vectors


Adding vectors results in a new Resultant Vector. Geometric and algebraic vectors can be added using different techniques.

Adding Algebraic Vectors

Algebraic vectors can be added by adding the respective components along each axis:

\( \vec{a} = \left<3,4\right>, \; \vec{b} = \left<-4,10\right> \)

\( \vec{a} + \vec{b} = \left<3 + -4, 4 + 10\right> = \left<-1, 14\right> \)


Recall the vector addition rules:


Commutative Law of Addition \(\vec{u} + \vec{v} = \vec{v} + \vec{u}\)
Associative Law of Addition \( (\vec{m} + \vec{n}) + \vec{o} = \vec{m} + (\vec{n} + \vec{o})\)

If \( \vec{d} = \left<3,6\right> \) and \( \vec{e} = \left<-4,-5\right> \) find \( 2 \vec{d} + 3 \vec{e}\).

Subtracting Algebraic Vectors

Like adding Algebraic vectors, subtract the respective components along each axis:

\( \vec{a} = \left<3,4\right>, \; \vec{b} = \left<-4,10\right> \)

\( \vec{a} - \vec{b} = \left<3 - (-4), 4 - 10\right> = \left<7, -6\right> \)


You can think of subtracting vectors as adding the Opposite vector:

\( \vec{a} - \vec{b} = \vec{a} + (-\vec{b}) \)

\( = \left<3,4\right> + (-\left<-4,10\right>) \)

\( = \left<3,4\right> + \left<4,-10\right> \)

\( = \left<3+4,4-10\right>\)

\( = \left<7,-6\right>\)



Enter in two vectors below. Then, Click the + button to toggle between addition and subtraction.











©MyHomeworkRewards 2016 - 2024